PERCUBAAN SPM PERLIS

Telegram @soalanpercubaanspm

ANSWER PAPER 1 TRIAL SPM 2020

1	A
2 3 4	A C C D
3	C
4	
5	D
6	А
7	A
8	A
9	C
10	A
11	В
12	A B C D
13	D
14	D
15	В
16	A
17	D
18	В
19	В
20	C
20	C

21	D
22	В
23	D
24	В
25	С
26	В
27	В
28	С
29	А
30	В
31	В
32	D
33	В
34	В
35	C C
36	
37	D
38	D
39	А
40	А

41	А
42	В
43	D
44	А
45	С
46	С
47	А
48	С
49	D
50	С

ANALISIS

A:11

B:12

C:14

D:13

PEPERIKSAAN PERCUBAAN SPM PERLIS 2020

CHEMISTRY 4541/2 Paper 2

	Quest		Answer	Mar
1	Numl	ber		
1	(a)	(i)	Water	1
		(ii) 🎸	Sodium Chloride	1
	(b)	(i)	Liquid	1
		(ii)	To achieve duplet electrons arrangement	1
	(c)	(i)	Ionic bond	1
		(ii)	Ion	1
	(d)	(i)	2.8.7	1
		(ii)	нсі	1
		(iii)	Low melting point // exist as gas in room temperature // low boiling	1
			point // dissolve in water // dissolve in organic solvent TOTAL	9

bom temperature // low boiling 1 n organic solvent 70TAL 9

2.	(a)	Aton	ns of same elemen					
		but o	different number o	fneutrons			1	
	(b)	To d	etect the leakage o	1	-			
		Tod	etect the blood clo					
	(c)	(0		-			
			Isotope					
			Isotop	Bilangan elektron	Bilangan neutron			
			Sodium-23	11	12			
			Natrium-23		1			
			Sodium-24		13			
			Natrium -24		print to be		1	
	(i) (i) The heat energy absorbed by particles is use to overcome the forces attraction between particles 1 (ii) (iii) 1						
	(d)	use to overcome the forces attraction between particles						
								-
		(11)		Temperature / °C	95			
				Suhy ∕°C	10			
					0	~		
			Freezing point	80		C,		
			Takat beku				5_	
				Telegram @sc	alanpercubaanspm			
		Time/s						SOM
					Masa/	s		S S
								NA
					Corect tit	le and unit	1	1
					Correct shap	pe of curve	1	
					mark fre	ezing ponit	1	
						TOTAL	9]

-	estion		Answer	Mark			
	nber	(\cdot)	Ester	1			
3	(a)	(i)	Ester	1			
-	2 4	(ii)	Propyl butanoate	1			
	(b) (i) Esterification						
	(ii) Butanoic acid						
	(iii) $C_3H_7OH + C_3H_7COOH \rightarrow C_3H_7COOC_3H_7 + H_2O$						
		\sim	correct chemical formulae for reactant and product [1m]	2			
		-6	balanced equation [1m]				
	(c) $C_{3}H_{7}OH + \frac{9}{2}O_{2} \rightarrow 3CO_{2} + 4H_{2}O //$ $2C_{3}H_{7}OH + 9O_{2} \rightarrow 6CO_{2} + 8H_{2}O$						
-			correct chemical formulae for reactant and product [1m] balanced equation [1m]	2			
	(d)		H H OH H-C-C-C-H H H H	1			
			Н Н Н H-C-C-C-H H OHH	1			
-			Total	10			

	Questi Numb		Answer	Mark	
4	(a)	(i)	period 2	1	
		(ii)	alkali metal	1	
		(iii)	T ⁺ Telegram @soalanpercubaanspm		
	(b)	(i)	more reactive		
		(ii)	atomic size for Q is bigger//		
			force of attraction between nucleus and electron for atom Q is	1 🗸	0
			weaker		5
	(c)	(i)	$4Na + O_2 \rightarrow 2Na_2O$		N
			correct chemical formulae for reactant and product [1m]	2	
			balanced equation [1m]		
		(ii)	mol Na $2.3/23 = 0.1$ [1 m]		
				3	
			from the equation 4 mol Na : 1 mol O_2		
			if $0.1 \text{ mol Na}: 0.025 \text{ mol } O_2 \ [1 \text{ m}]$		
			mass $O_2 = 0.025 \text{ x } 32 = 0.8 \text{ g} [1 \text{ m}]$		
			TOTAL	10	

	-	stion nber 🍟	Answer	Mark
5	(a)		positively charged ion	1
	(b)	(i)	Lead (II) iodide / Plumbum (II) iodida	1
			yellow precipitate will dissolve when heated	1
		(ii) (iii)	yellow precipitate will form again when it is cooled	1
		(111)	Pb ²⁺ + 21 PbI ₂ Telegram @soalanpercubaanspm correct chemical formulae for reactant and product [1m] balanced equation [1m]	2
		(iv)	from the equation 2 mol f : 1 mol PbI ₂ if 0.0002 mol f : 0.0001 mol PbI ₂ [1 m] mass PbI ₂ = 0.0001 x 461 = 0.0461g [1 m]	2
	(c)		zinc ion / Zn^{2+}	1
	(d)		1. add excess sodium hydroxide solution into the industrial waste water	1 1
			2. blue precipitate formed OR	
			1. add excess ammonia solution into the industrial waste water	
			2. dark blue solution formed TOTAL	11
			and a current of the	22
				- ar

6.	(a)	To r	educe heat lost to surrounding//	1							
		Poly	styrene is a good insulator of heat								
	(b)	Pb ²⁺	$+SO_4^2 \rightarrow PbSO_4$	1							
	(c)	(c) (i) (50+50) x 4.2 x (32.0 – 28.0) J // 1680 J // 1.68 kJ									
		C	(r: without unit)	1							
		(ii)	Number of mole of lead(II) ion								
			$n = 0.5 \times 50$ // 0.025 mol								
			1000								
			OR	1							
			Number of mole of sulphate ion								
			$n = 0.5 \times 50$ // 0.025 mol								
			1000								
			0.025 mol PbSO4 precipitate produce + 1680 J								
			1.0 mol PbSO4 precipitate produce $\rightarrow 67200 J$								
			OR	1							
			<u>1680</u> // - <u>1.68</u>								
			OR $\frac{1680}{0.025}$ // - $\frac{1.68}{0.025}$ = - 67200 J mol ⁻¹ // - 67.2 kJ mol ⁻¹ Heat of precipitation = ΔH = -67.2 kJ mol ⁻¹								
			$= - 67200 \text{ J mol}^{-1} // - 67.2 \text{ kJ mol}^{-1}$								
			Heat of precipitation = ΔH = -67.2 kJ mol ⁻¹								
			(r: without unit)	0.							
	(d)	(i)	Heat of combustion is heat released when 1 mol of alcohol/fuel is burnt in excess oxygen		2						
		(ii)	Range between 3320-3340 kJ	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
*****		(ii)	1.number of carbon atom increases	1							
			 more carbon dioxide and water are formed more heat released during bond formation 	1							
			TOT I T	11							
			TOTAL	11							

Question	i .	Answer	Mark
number			
7 (a)		Set I: In dry state, hydroxide ions in solid sodium hydroxide are arranged orderly at fixed position.	1
· ·			1
		Dry solid sodium hydroxide does not show alkaline properties. Set II: When moist red litmus paper is used/ water is present, sodium	
- (),	hydroxide ionises in water to produce free moving hydroxide ions.	1
	4	Sodium hydroxide shows alkaline properties.	
(b)		Sodium hydroxide is strong alkali but ammonia is weak alkali.	1
(0)		Sodium hydroxide is strong arkan but annionia is weak arkan.	1
	Li I		1
		partially in water.	1
		Sodium hydroxide produces high concentration of hydroxide ions but	4
		ammonia produces low concentration of hydroxide ions.	
		The higher the concentration of hydroxide ions, the higher the pH	1
S 16	10.7	value.	12
(c)	(i)	Dilution	1
		$0.1 \times V = 0.02 \times 250$	1
		Volume = 50 cm^3	1
	(ii)	pH value is lower than 13	1
		Concentration of hydroxide ions decreases.	1
		The lower the concentration of hydroxide ions, the lower the pH	1
		value.	
	(iii)	Neutralisation	1
		$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$	
		correct chemical formulae for reactant and product [1m]	1
		balanced equation [1m]	1
		Calculation:	
		0.02×25 // 0.002	
		Number of mole of NaOH = $\frac{0.02 \times 25}{1000}$ // 0.0005 mol	1
		2 mol of NaOH reacts with 1 mol of H_2SO_4 //	
		0.0005 mol of NaOH reacts with 1 mol of H2SO4//	
		post met de la presión de la sectemente	1
		Concentration of H ₂ SO ₄ = $\frac{0.00025 \times 1000}{25}$ mol dm ⁻³ // 0.01 mol dm ⁻³	
		25	
		OR Telegram @soalanpercubaanspm	
			OR
		$\frac{M_a \times 25}{0.02 \times 25} = \frac{1}{2}$	
			1+1
		$M_a = 0.01 \text{ mol } dm^{-3}$	1
			1
		Tatal	20
		Total	20

Que	estion 1ber		Answer	Marl
8	(a)	(i)	 oxidation number for magnesium is +2 oxidation number for ferum is +3 	1 1
		(ii)	 MgCl₂ is magnesium chloride / magnesium klorida Fe₂O₃ is iron(II) oxide / ferum (II) oksida 	1 1
	(b)	(i)	redox//oxidation and reduction	1
		(ii)	 metal Y is copper metal Z is zinc Mg, Z, Y 2Mg + O₂ → 2MgO 	1 1 1
			correct chemical formulae reactant & product [1m] balanced equation[1m]	2
	(c)	(i)	1. metal R is Sn // Pb // Cu//Ag 2. metal S is Mg//Al//Zn Set 1 3. Iron rusts/corrode 4. Iron is more electropositive than R 5. Fe ²⁺ is formed 6. Fe \rightarrow Fe ²⁺ + 2e 7. Iron is oxidized Set II 8. Iron does not rust 9. Iron is less electropositive than S 10. Presence of OH ⁻ 11. O ₂ + H ₂ O + 4e \rightarrow 4OH ⁻ 12. Metal S is oxidized TOTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1
L <u></u>			ans,	3

1/2	Questi Numb		Answer	Mark
0	9 (a)	(i)	• Y: (Name of any metal situated above Cu in the	1
Y	×		electrochemical series)	~
	OY.		 Z: (Name of any acid) 	1
	YO			
		-	Sample answer:	
		L.	Y: Magnesium // Zinc // Aluminium	
	1	0	[Reject: Sodium // Potassium]	
		1		
			Z: Hydrochloric acid // Sulphuric acid // Nitric acid	
			[Accept: weak acid]	
			Telegram @soalanpercubaanspm	
			 Chemical equation: 	
			Correct formula of reactants and	1
			products Balanced	1
			Sample answer:	
			$Mg + 2HCl \rightarrow MgCl_2 + H_2$	4
			9 <u>~</u>	
		(ii)	Experiment I	
			Average Rate of Reaction $= 30/10 = 3.0 \text{ cm}^3 \text{s}^{-1}$	1
			Experiment II	1
			Average Rate of Reaction = $30/20$ = $1.5 \text{ cm}^3 \text{s}^{-1}$	
			[With correct unit]	
				2
			<u> </u>	
		difference in the		
		(iii)		70
			 Rate of reaction in Experiment I is higher than Experiment II 	1
			 The size of metal Y in Experiment I is smaller than 	
			Experiment II // The total surface area of metal Y in	
			Experiment I larger than Experiment II	
			 Frequency of collision between hydrogen ions and atoms of 	
			Y in Experiment I is higher than in Experiment II	1
			 Frequency of effective collision (between the particles) 	
			in Experiment I is higher than in Experiment II	1
				4

(b)	Temperature:	
X	1. $(20 - 100)$ cm ³ of $(0.1 - 1.0)$ mol dm ⁻³ sodium thiosulphate solution is measured	1
100	 Sodium thiopsulphate solution is then poured into a conical flask 	1
	3. The initial temperature of sodium thiosulphate is recorded	1
	4. The conical flask is placed on the top of a piece of white paper marked with "X"	1
	5. 5.0 cm ³ of $(0.1 - 1.0)$ mol dm ⁻³ hydrochloric acid is measured	1
	6. The hydrochloric acid is poured quickly into the conical flask.	1
	7. A stopwatch is started immediately	1
	8. The conical flask is swirled throughout the experiment	L
	 The time taken for the mark "X" to disappear from sight is recorded 	1
	10. The experiment is repeated using sodium thiosulphate solution	1
	solution at 35°C, 40°C,45°C and 50°C.	1
	S	10
	OR	
		OR
	Presence of catalyst:	
	1. $(25-50)$ cm ³ of $(0.1-1.0)$ mol dm ⁻³ of hydrochloric acid is	
	measured and poured into a conical flask.	1
	2 About 5.0 g of zinc granules is weigh.	1
	3. A burette is filled with water and inverted into a basin containing water	1
	4 The water level in the burette is adjusted to 50 cm ³ mark.	
	5. The granulated zinc is added into the conical flask.	1
	6. Immediately the conical flask is closed and connect it using	1
	delivery tube to the burette	1
	7. The stopwatch is started.8. The conical flask is shaken steadily.	1
	 9. Record volume of hydrogen gas every 30 seconds interval. 	1
	10. The experiment is repeated by adding 5 cm ³ of copper(II)	A I
	sulphate solution into the reactants mixture.	2
		10
	TOTAL	20

					11		
		Type of	Diame	ter of de	nt (cm)	Average diameter of dent (cm)	
2		material				riverage diameter of dem (em)	
6		Jenis bahan	1	2	3		
(9	Copper	a1	a2	a ₃	a1 + a2 + a3 // a	1
	Ģ					3	
		Bronze/Brass	b1	b ₂	b ₃	b1 + b2 + b3 // b	1
		B,				3	
	C	onclusion					
		Fronze / alloy P] // [bi	0			an coppery	1
	Т	elegram @soalan	percuba	anspm			max=10
-			- ()		TOTAI	. 20
					~	anoerculoaan,	Som

11

PEPERIKSAAN PERCUBAAN SPM PERLIS TAHUN 2020

SKEMA KIMIA KERTAS 3 (4541/3)

x

		1
Question	Rubric	Score
number	<u> </u>	_
1 (-)		2
1 (a)	[Able to record all readings accurately with unit.]	3
	Sample answer :	
	Set I : 0.7 V	
	Set II : 1.6 V	
	Set III : 2.4 V	
	[Able to record all readings accurately without unit, or able to record any two readings	2
	correctly with unit, or able to record all readings accurately in two decimal places without	
	unit.]	
	Sample answer :	
	Set I : 0.7 / 0.70 Set II : 1.6 / 1.60	
	Set III : 2.4 / 2.40	
	Set III . 2.47 2.40	
	[Able to record at least one reading correctly.]	1
	······	-
	No response or wrong response	0
		0
		1

Question number	Rubric	Score
1 (b)	[Able to state the three variables correctly.]	3
	Sample answer : Manipulated variable : Pairs of metals//Tin, zinc, magnesium Responding variable : Potential difference//Voltmeter reading Fixed variable : Type of electrolyte//Metal X	-On
	[Able to state any two variables correctly.]	2
	[Able to state any one variable correctly.]	1
	No response or wrong response	0

Question number	Rubric	Score
1 (c)	[Able to state the relationship between the manipulated variable and the responding variable and state the direction correctly.]	3
	Sample answer : The further the distance between two metals in electrochemical series, the voltmeter reading becomes higher.	
	[Able to state the relationship between the manipulated variable and the responding variable without stating the direction.]	2
	Sample answer : The distance between two metals in electrochemical series influences changes the voltmeter reading.	
	[Able to give an idea of hypothesis.]	1
	Sample answer : Different metal has a different voltage	
	No response or wrong response	0

Question number	Rubric	Score
1 (d)	 [Able to give the operational definition for the construction of electrochemical series correctly with the following aspects : (I) What should be done (II) What should be observed Sample answer : Telegram @soalanpercubaanspm When two different metals are dipped into an electrolyte, the voltmeter gives a higher reading shows that the further the distance between two metals.	3
	[Able to give the operational definition for the construction of electrochemical series incompletely with any (one) aspects either (I) or (II)] Sample answer : Two different metals are dipped into an electrolyte// the voltmeter gives a higher reading shows that the further the distance between two metals.	3
	[Able to give an idea of operational definition for the construction of electrochemical series.] Sample answer : The voltmeter gives a reading.	1
	No response or wrong response	0

Question number	Rubric	Score
1 (e)	[Able to arrange the four metals correctly.]	3
	(accept symbol)	
	Sample answer : X, tin, zinc, magnesium.	
	[Able to arrange any three metals in sequence correctly.] (accept symbol)	2
	Sample answer : X, tin, zinc//Tin, zinc, magnesium	
	[Able to arrange any two metals in sequence correctly.] (accept symbol)	1
	Sample answer : X, tin // tin, zinc // zinc, magnesium.	
	No response or wrong response	0
L	No.	

Question number	Rubric	Score
1 (f)(i)	[Able to state the size change of metal X correctly.]	3
	Sample answer : The size of metal X increases//thicker.	an.
	[Able to state the size change of metal X less correctly.]	0
	Sample answer : The size of metal X changes.	
	[Able to give an idea of any observation.]	1
	Sample answer : Magnesium electrode become thinner.	
	No response or wrong response	0

Question number	Rubric	Score
1 (f)(ii)	[Able to make inference correctly.]	3
0	Sample answer : Copper(II) ion receive electron/discharge to form copper atom.	
	[Able to make inference less correctly.]	2
	Sample answer : Copper(II) ion discharge//copper atom formed.	
	[Able to give an idea of inference based on observation given in f(i).]	1
	Sample answer : Magnesium dissolved.	
	No response or wrong response	0

Question number	Rubric	Score
1 (f)(iii)	[Able to state the relationship between the change in the size of X electrode with time correctly.] Telegram @soalanpercubaanspm Sample answer : The size of X electrode increases with time.	3
	[Able to state the relationship between the change in the size of X electrode with time less correctly.] Sample answer : Telegram @soalanpercubaanspm The size of X electrode directly proportional with time.	2
	[Able to give an idea of size of X electrode.] Sample answer : The size of X electrode changes.	1
	No response or wrong response	0

Question	Rubric	Score
number		
1 (g)	[Able to predict the voltage produced accurately.]	3
	Telegram @soalanpercubaanspm	
	Answer :	
	2.0 V//2.0	
	0	
	YO	
	[Able to predict the voltage produced less accurately.]	2
	Sample answer :	
	1.8	
	[Any value between 1.6 and 2.4]	
	[Able to give an idea of the voltmeter reading.]	1
	Answer : Less than 2.4	
	No response or wrong response	0

	20	
Question number	Rubric	Score
1 (h)	 [Able to achieve all the following aspects correctly : (i) Balance the half equation at zinc electrode. (ii) Balance the half equation at metal X electrode. (iii) Write the overall ionic equation.] 	3
	(ii) Write the overall ionic equation at metal X electrode. (iii) Write the overall ionic equation.] Answer: At zinc electrode : $Zn \rightarrow Zn^{2+} + 2e$ At metal X electrode : $X^{2+} + 2e \rightarrow X$ Overall ionic equation : $Zn + X^{2+} \rightarrow Zn^{2+} + X$	
	[Able to achieve any two aspects correctly.]	2
	[Able to achieve any one aspect correctly.]	1
	No response or wrong response	0

Question number		Rubric	Score
1 (i)	[Able to classify all the four metals co	prrectly.]	3
10	Answer :		
-	Metal which are more	Metal which are less	
	electropositive than copper	electropositive than copper	
	Iron Tin	Silver Gold	
	[Able to classify any three metals cor	rrectly.]	2
	[Able to classify any two metals corre	ectly.]//Classify inversely	1
	No response or wrong response	5	0
		Soalanoercubaa	
			20
			0
			nson.

Question	Rubric	Score
number		
2 (a)	[Able to give the problem statement correctly.]	3
6	Sample answer : Telegram @soalanpercubaanspm How does when iron in contact with magnesium, rusting of iron inhibit? // How does when iron in contact with copper, rusting of iron increase? // What is the effect of other metal on the rusting of iron?	
	[Able to give the problem statement less correctly.]	
	Sample answer : To investigate the effect of rusting of iron when in contact with more electropositive metal. // To investigate the effect of rusting of iron when in contact with less electropositive metal.	
	[Able to give an idea of the problem statement.] Sample answer :	1
	Does rusting occurs when iron in contact with other metal?	
	No response or wrong response	0

Question	Rubric	Score
number		
2 (b)	[Able to state all the variables correctly.]	3
	Sample answer : Manipulated variable : Magnesium and copper // Type of metals in contact with iron.	
	Responding variable : Rusting of iron // formation of blue spot/colouration.	2
	Fixed variable : Iron nails // jelly/agar-agar solution // electrolyte // temperature // potassium hexacyanoferrate(III) solution.	7
	[Able to state any two variables correctly.]	2
	[Able to state any one variable correctly.]	1
	No response or wrong response	0

Question number	Rubric	Score
2 (c)	[Able to state the relationship between the manipulated variable and the responding variable correctly and with direction.]	3
6	Sample answer : When iron in contact with magnesium, rusting of iron inhibit // When iron in contact with copper, rusting of iron increase	
	[Able to state the relationship between the manipulated variable and the responding variable correctly and without direction.]	2
	Sample answer : When iron in contact with metal, iron does not rust. // When iron in contact with metal, rusting occurs.	
	[Able to give an idea of the hypothesis.]	1
	Sample answer : The presence of metal effect rusting.	
	No response or wrong response	0

0 "			
Question number	Rubric	Score	
number			
2 (d)	[Able to list all the materials and apparatus correctly.]	3	
	Sample answer :		
	Materials : Iron nail, magnesium ribbon, copper strip, jelly//agar-agar solution, potassium		
	hexacyanoferrate(III) and phenolphthalein indicator, sand paper.		
	Apparatus : Test-tubes//boiling tubes, test tube rack.		
	[Able to give a list the following materials and amountue]	2	
	[Able to give a list the following materials and apparatus.]	\cap^2	
	Somelo ongren e	N'A	
	Sample answer : Materials : Iron noil magnesium, companially solution, notossium housesuon oferrate (III)	10	
	Materials : Iron nail, magnesium, copper, jelly solution, potassium hexacyanoferrate (III).		
	Apparatus : Test-tubes//boiling tubes, test tube rack.		
	[Able to give an idea of materials and apparatus.]	1	
	[Note to give an idea of materials and apparatus.]	1	
	Sample answer :		
	Materials : Iron nail, magnesium/copper.		
	Apparatus : Boiling tube / beaker / any suitable container.		
	No response or wrong response	0	
	To response of wrong response		

Question number	Rubric	Score
2 (e)	[Able to state all steps in the procedure correctly.] Sample answer : 1. Iron nails, magnesium ribbon and copper strip are cleaned with sand paper.	3
	2. Both iron nails is coiled with different metal.	
	 The iron nails are put into two different test tubes. The mixture of jelly solutions, potassium hexacyanoferrate (III) and phenolphthalein indicator is poured into the test tubes. The test tube left aside for one day. Any observation are recorded. 	
	[Able to state the steps 2, 3, 4 and 6]	2
	[Able to state steps 2 and 4]	1
	No response or wrong response	0

 \bigcirc

Question number		Rubric	Score
2 (f)	[Able to tabulate the data	with the following aspects :]	2
	 Correct titles Complete list of metals 		
	Sample answer :		
	Pairs of metal	Observation	
	Iron + magnesium		
	Iron + copper	Telegram @soalanpercubaanspm	0
			0
	[Able to tabulate the data l	put incomplete.]	1
	Sample answer :		
	Iron + magnesium		
	Iron + copper		
	No response or wrong resp	ponse	0